Displaying 41 – 60 of 107

Showing per page

The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

Hyeseon Kim, Atsushi Yamamori (2018)

Czechoslovak Mathematical Journal

We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.

The homogeneous transfinite diameter of a compact subset of N

Mieczysław Jędrzejowski (1991)

Annales Polonici Mathematici

Let K be a compact subset of N . A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of N is computed.

The Hua system on irreducible Hermitian symmetric spaces of nontube type

Dariusz Buraczewski (2004)

Annales de l’institut Fourier

Let G / K be an irreducible Hermitian symmetric space of noncompact type. We study a G - invariant system of differential operators on G / K called the Hua system. It was proved by K. Johnson and A. Korányi that if G / K is a Hermitian symmetric space of tube type, then the space of Poisson-Szegö integrals is precisely the space of zeros of the Hua system. N. Berline and M. Vergne raised the question about the nature of the common solutions of the Hua system for Hermitian symmetric spaces of nontube type. In...

The Lindelöf principle in ℂn

Peter Dovbush (2013)

Open Mathematics

Let D be a bounded domain in ℂn. A holomorphic function f: D → ℂ is called normal function if f satisfies a Lipschitz condition with respect to the Kobayashi metric on D and the spherical metric on the Riemann sphere ̅ℂ. We formulate and prove a few Lindelöf principles in the function theory of several complex variables.

The Łojasiewicz exponent of c-holomorphic mappings

Maciej P. Denkowski (2005)

Annales Polonici Mathematici

The aim of this paper is to study the Łojasiewicz exponent of c-holomorphic mappings. After introducing an order of flatness for c-holomorphic mappings we give an estimate of the Łojasiewicz exponent in the case of isolated zero, which is a generalization of the one given by Płoski and earlier by Chądzyński for two variables.

The membership problem for polynomial ideals in terms of residue currents

Mats Andersson (2006)

Annales de l’institut Fourier

We find a relation between the vanishing of a globally defined residue current on n and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.

The multi-morphisms and their properties and applications

Mirosław Ślosarski (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In this paper a new class of multi-valued mappings (multi-morphisms) is defined as a version of a strongly admissible mapping, and its properties and applications are presented.

The null space of the ¯ -Neumann operator

Lars Hörmander (2004)

Annales de l’institut Fourier

Let Ω be a complex analytic manifold of dimension n with a hermitian metric and C boundary, and let = ¯ ¯ * + ¯ * ¯ be the self-adjoint ¯ -Neumann operator on the space L 0 , q 2 ( Ω ) of forms of type ( 0 , q ) . If the Levi form of Ω has everywhere at least n - q positive or at least q + 1 negative eigenvalues, it is well known that Ker has finite dimension and that the range of is the orthogonal complement. In...

Currently displaying 41 – 60 of 107