Displaying 41 – 60 of 81

Showing per page

The monodromy conjecture for zeta functions associated to ideals in dimension two

Lise Van Proeyen, Willem Veys (2010)

Annales de l’institut Fourier

The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an...

The rational homotopy of Thom spaces and the smoothing of isolated singularities

Stefan Papadima (1985)

Annales de l'institut Fourier

Rational homotopy methods are used for studying the problem of the topological smoothing of complex algebraic isolated singularities. It is shown that one may always find a suitable covering which is smoothable. The problem of the topological smoothing (including the complex normal structure) for conical singularities is considered in the sequel. A connection is established between the existence of certain relations between the normal Chern degrees of a smooth projective variety and the question...

The Seiberg–Witten invariants of negative definite plumbed 3-manifolds

András Némethi (2011)

Journal of the European Mathematical Society

Assume that Γ is a connected negative definite plumbing graph, and that the associated plumbed 3-manifold M is a rational homology sphere. We provide two new combinatorial formulae for the Seiberg–Witten invariant of M . The first one is the constant term of a ‘multivariable Hilbert polynomial’, it reflects in a conceptual way the structure of the graph Γ , and emphasizes the subtle parallelism between these topological invariants and the analytic invariants of normal surface singularities. The second...

The stack of microlocal perverse sheaves

Ingo Waschkies (2004)

Bulletin de la Société Mathématique de France

In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.

The versality discriminant and local topological equivalence of mappings

James Damon (1990)

Annales de l'institut Fourier

We will extend the infinitesimal criteria for the equisingularity (i.e. topological triviality) of deformations f of germs of mappings f 0 : k s , 0 k t , 0 to non-finitely determined germs (these occur generically outside the “nice dimensions” for Mather, even among topologically stable mappings). The failure of finite determinacy is described geometrically by the “versality discriminant”, which is the set of points where f 0 is not stable (i.e. viewed as an unfolding it is not versal). The criterion asserts that...

Topological invariants of isolated complete intersection curve singularities

V. H. Jorge Pérez, M. E. Hernandes (2009)

Czechoslovak Mathematical Journal

In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.

Topological K-equivalence of analytic function-germs

Sérgio Alvarez, Lev Birbrair, João Costa, Alexandre Fernandes (2010)

Open Mathematics

We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.

Currently displaying 41 – 60 of 81