Displaying 661 – 680 of 785

Showing per page

The characteristic variety of a generic foliation

Jorge Vitório Pereira (2012)

Journal of the European Mathematical Society

We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.

The dynamics of holomorphic maps near curves of fixed points

Filippo Bracci (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let M be a two-dimensional complex manifold and f : M M a holomorphic map. Let S M be a curve made of fixed points of f , i.e.  Fix ( f ) = S . We study the dynamics near  S in case  f acts as the identity on the normal bundle of the regular part of  S . Besides results of local nature, we prove that if  S is a globally and locally irreducible compact curve such that S · S < 0 then there exists a point p S and a holomorphic f -invariant curve with  p on the boundary which is attracted by  p under the action of  f . These results are achieved...

The end curve theorem for normal complex surface singularities

Walter D. Neumann, Jonathan Wahl (2010)

Journal of the European Mathematical Society

We prove the “End Curve Theorem,” which states that a normal surface singularity ( X , o ) with rational homology sphere link Σ is a splice quotient singularity if and only if it has an end curve function for each leaf of a good resolution tree. An “end curve function” is an analytic function ( X , o ) ( , 0 ) whose zero set intersects Σ in the knot given by a meridian curve of the exceptional curve corresponding to the given leaf. A “splice quotient singularity” ( X , o ) is described by giving an explicit set of equations describing...

The Euler number of the normalization of an algebraic threefold with ordinary singularities

Shoji Tsuboi (2004)

Banach Center Publications

By a classical formula due to Enriques, the Euler number χ(X) of the non-singular normalization X of an algebraic surface S with ordinary singularities in P³(ℂ) is given by χ(X) = n(n²-4n+6) - (3n-8)m + 3t - 2γ, where n is the degree of S, m the degree of the double curve (singular locus) D S of S, t is the cardinal number of the triple points of S, and γ the cardinal number of the cuspidal points of S. In this article we shall give a similar formula for an algebraic threefold with ordinary singularities...

The freeness of ideal subarrangements of Weyl arrangements

Takuro Abe, Mohamed Barakat, Michael Cuntz, Torsten Hoge, Hiroaki Terao (2016)

Journal of the European Mathematical Society

A Weyl arrangement is the arrangement defined by the root system of a finite Weyl group. When a set of positive roots is an ideal in the root poset, we call the corresponding arrangement an ideal subarrangement. Our main theorem asserts that any ideal subarrangement is a free arrangement and that its exponents are given by the dual partition of the height distribution, which was conjectured by Sommers–Tymoczko. In particular, when an ideal subarrangement is equal to the entireWeyl arrangement, our...

The geometric genus of hypersurface singularities

András Némethi, Baldur Sigurdsson (2016)

Journal of the European Mathematical Society

Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.

The incidence class and the hierarchy of orbits

László Fehér, Zsolt Patakfalvi (2009)

Open Mathematics

R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ η ¯ . Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ η ¯ for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity...

The index of a vector field tangent to a hypersurface and the signature of the relative jacobian determinant

Xavier Gómez-Mont, Pavao Mardešić (1997)

Annales de l'institut Fourier

Given a real analytic vector field tangent to a hypersurface V with an algebraically isolated singularity we introduce a relative Jacobian determinant in the finite dimensional algebra B Ann B ( h ) associated with the singularity of the vector field on V . We show that the relative Jacobian generates a 1-dimensional non-zero minimal ideal. With its help we introduce a non-degenerate bilinear pairing, and its signature measures the size of this point with sign. The signature satisfies a law of conservation of...

The index of analytic vector fields and Newton polyhedra

Carles Bivià-Ausina (2003)

Fundamenta Mathematicae

We prove that if f:(ℝⁿ,0) → (ℝⁿ,0) is an analytic map germ such that f - 1 ( 0 ) = 0 and f satisfies a certain non-degeneracy condition with respect to a Newton polyhedron Γ₊ ⊆ ℝⁿ, then the index of f only depends on the principal parts of f with respect to the compact faces of Γ₊. In particular, we obtain a known result on the index of semi-weighted-homogeneous map germs. We also discuss non-degenerate vector fields in the sense of Khovanskiĭand special applications of our results to planar analytic vector fields....

The jump of the Milnor number in the X 9 singularity class

Szymon Brzostowski, Tadeusz Krasiński (2014)

Open Mathematics

The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.

Currently displaying 661 – 680 of 785