The singularities of Yang-Mills connections for bundles on a surface.
In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.
We will extend the infinitesimal criteria for the equisingularity (i.e. topological triviality) of deformations of germs of mappings , , to non-finitely determined germs (these occur generically outside the “nice dimensions” for Mather, even among topologically stable mappings). The failure of finite determinacy is described geometrically by the “versality discriminant”, which is the set of points where is not stable (i.e. viewed as an unfolding it is not versal). The criterion asserts that...
We express the Lyubeznik numbers of the local ring of a complex isolated singularity in terms of Betti numbers of the associated real link.
In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.
We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.
We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities.The algebraic conditions are related to the operation of adjoining powers,...
Let f be an analytic function germ at 0 in C2. We compare the topological complexity of the discriminant curve of f to the one of its polar curve.
One has two notions of vanishing cycles: the Deligne's general notion and a concrete one used recently in the study of polynomial functions. We compare these two notions which gives us in particular a relative connectivity result. We finish with an example of vanishing cycle calculation which shows the difficulty of a good choice of compactification.
Nous donnons un système complet d’invariants de la classe de conjugaison topologique de polynômes de en dehors d’un compact suffisamment grand dans les deux sens suivants : en tant que feuilletages (en oubliant les valeurs des fibres) et en tant que fonctions. Ces invariants sont donnés par un arbre pondéré, fléché et coloré, obtenu à partir de la résolution des singularités du polynôme sur la droite à l’infini. Nous donnons un critère de régularité pour les valeurs d’un polynôme et une description...
Caustics of geometrical optics are understood as special types of Lagrangian singularities. In the compact case, they have remarkable topological properties, expressed in particular by the Chekanov relation. We show how this relation may be experimentally checked on an example of biperiodic caustics produced by the deflection of the light by a nematic liquid crystal layer. Moreover the physical laws may impose a geometrical constraint, when the system is invariant by some group of symmetries. We...
This work contains an extended version of a course given in Arrangements in Pyrénées. School on hyperplane arrangements and related topics held at Pau (France) in June 2012. In the first part, we recall the computation of the fundamental group of the complement of a line arrangement. In the second part, we deal with characteristic varieties of line arrangements focusing on two aspects: the relationship with the position of the singular points (relative to projective curves of some prescribed degrees)...
We determine bifurcation sets of families of affine curves and study the topology of such families.