Displaying 61 – 80 of 785

Showing per page

Bernstein polynomials and spectral numbers for linear free divisors

Christian Sevenheck (2011)

Annales de l’institut Fourier

We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.

Bernstein-Sato Polynomials and Spectral Numbers

Andréa G. Guimarães, Abramo Hefez (2007)

Annales de l’institut Fourier

In this paper we will describe a set of roots of the Bernstein-Sato polynomial associated to a germ of complex analytic function in several variables, with an isolated critical point at the origin, that may be obtained by only knowing the spectral numbers of the germ. This will also give us a set of common roots of the Bernstein-Sato polynomials associated to the members of a μ -constant family of germs of functions. An example will show that this set may sometimes consist of all common roots.

BGG resolutions via configuration spaces

Michael Falk, Vadim Schechtman, Alexander Varchenko (2014)

Journal de l’École polytechnique — Mathématiques

We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the 𝔰𝔩 2 Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.

Bi-Lipschitz trivialization of the distance function to a stratum of a stratification

Adam Parusiński (2005)

Annales Polonici Mathematici

Given a Lipschitz stratification 𝒳 that additionally satisfies condition (δ) of Bekka-Trotman (for instance any Lipschitz stratification of a subanalytic set), we show that for every stratum N of 𝒳 the distance function to N is locally bi-Lipschitz trivial along N. The trivialization is obtained by integration of a Lipschitz vector field.

Bounding the degree of solutions to Pfaff equations

Marco Brunella, Luis Gustavo Mendes (2000)

Publicacions Matemàtiques

We study hypersurfaces of complex projective manifolds which are invariant by a foliation, or more generally which are solutions to a Pfaff equation. We bound their degree using classical results on logarithmic forms.

Braid Monodromy of Algebraic Curves

José Ignacio Cogolludo-Agustín (2011)

Annales mathématiques Blaise Pascal

These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated...

Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces

Klaus Hulek, Remke Kloosterman (2011)

Annales de l’institut Fourier

In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective 4 -space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.

Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility

Evelia R. García Barroso, Janusz Gwoździewicz (2010)

Annales de l’institut Fourier

In this paper we characterize, in two different ways, the Newton polygons which are jacobian Newton polygons of a plane branch. These characterizations give in particular combinatorial criteria of irreducibility for complex series in two variables and necessary conditions which a complex curve has to satisfy in order to be the discriminant of a complex plane branch.

Currently displaying 61 – 80 of 785