Sur l'approximation des hypersurfaces
Nous considérons l’action de la monodromie sur l’homologie de la fibre de Milnor d’une singularité complexe. Cette action est plus compliquée que prévu : en effet nous montrons que, sur , elle n’est, en général, pas somme directe de modules cycliques. Nous donnons également des exemples prouvant que la monodromie rationnelle ne détermine pas la monodromie entière et que la monodromie entière ne détermine pas la topologie.
Let F be a codimension one holomorphic foliation whose singular set Σ is contained in a compact leaf S of F.When F is of dimension one, Σ is a set of isolated points {q1, ..., qr}, C. Camacho and P. Sad define the index of F at each point qk and prove that the sum of these indices equals the Euler class c1(E) of the fibre bundle E normal to S.Generally, whenever Σ is of any dimension m, we can define a such index iα along the maximal dimension strates {Σα} of a suitable stratification of the complex...
Dans cet article nous étudions les feuilletages holomorphes réduits en dimension complexe 2. Plus précisément, nous caractérisons par leur espace de module analytique, ceux qui sont transversalement projectifs en dehors d'un sous-ensemble analytique propre. Ceci entraî ne que cette classe de feuilletages est obtenue par pull-back d'équations de Riccati. Nous montrons enfin que cette dernière propriété peut être mise en défaut dans le cas non réduit.
Dans notre article [6] nous avons construit, pour une classe assez large de germes de fonctions holomorphes à lieu singulier de dimension 1 des invariants analytiques qui généralisent le réseau de Brieskorn d’un germe à singularité isolée. Dans cet article nous montrons que les résultats que nous avions obtenus s’étendent àtous les germes à lieu singulier de dimension 1 sans autre restriction. Ces invariants, essentiellement donnés par des (a,b)-modules géométriques, (objet qui est une abstraction...
0n se donne une variété complexe , compacte, de dimension complexe , un champ de vecteurs holomorphe sur , un fibré vecoriel de rang au dessus de et une -action sur . Il est bien connu que si n’a pas de singularité, tous les nombres de Chern sont nuls (). Si a des singularités, Bott a démontré que ces nombres de Chern se localisent près de ces singularités donnant lieu à des résidus . Ces résidus ont été calculés d’abord par Bott dans le cas d’une singularité isolée non dégénérée,...
Nous étudions des feuilletages Levi-plats dont la partie complexe est un feuilletage holomorphe ayant une singularité isolée en l’origine de . Nous montrons que, si la partie complexe est non dégénérée après un éclatement, alors le feuilletage Levi-plat et sa partie complexe sont chacun décrits par une intégrale première submersive sauf en l’origine.
We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve and the stability of the sheaf of logarithmic vector fields along , the freeness of the divisor and the Torelli properties of (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.