Previous Page 4

Displaying 61 – 76 of 76

Showing per page

Sur le rôle de la monodromie entière dans la topologie des singularités

Françoise Michel, Claude Weber (1986)

Annales de l'institut Fourier

Nous considérons l’action de la monodromie sur l’homologie de la fibre de Milnor d’une singularité complexe. Cette action est plus compliquée que prévu : en effet nous montrons que, sur Z , elle n’est, en général, pas somme directe de modules cycliques. Nous donnons également des exemples prouvant que la monodromie rationnelle ne détermine pas la monodromie entière et que la monodromie entière ne détermine pas la topologie.

Sur les feuilletages holomorphes singuliers de codimension 1.

Bouchra Gmira (1992)

Publicacions Matemàtiques

Let F be a codimension one holomorphic foliation whose singular set Σ is contained in a compact leaf S of F.When F is of dimension one, Σ is a set of isolated points {q1, ..., qr}, C. Camacho and P. Sad define the index of F at each point qk and prove that the sum of these indices equals the Euler class c1(E) of the fibre bundle E normal to S.Generally, whenever Σ is of any dimension m, we can define a such index iα along the maximal dimension strates {Σα} of a suitable stratification of the complex...

Sur les feuilletages holomorphes transversalement projectifs

Frédéric Touzet (2003)

Annales de l’institut Fourier

Dans cet article nous étudions les feuilletages holomorphes réduits en dimension complexe 2. Plus précisément, nous caractérisons par leur espace de module analytique, ceux qui sont transversalement projectifs en dehors d'un sous-ensemble analytique propre. Ceci entraî ne que cette classe de feuilletages est obtenue par pull-back d'équations de Riccati. Nous montrons enfin que cette dernière propriété peut être mise en défaut dans le cas non réduit.

Sur les fonctions à lieu singulier de dimension 1

Daniel Barlet (2009)

Bulletin de la Société Mathématique de France

Dans notre article [6] nous avons construit, pour une classe assez large de germes de fonctions holomorphes f : ( n + 1 , 0 ) ( , 0 ) à lieu singulier S : = { d f = 0 } de dimension 1 des invariants analytiques qui généralisent le réseau de Brieskorn d’un germe à singularité isolée. Dans cet article nous montrons que les résultats que nous avions obtenus s’étendent àtous les germes à lieu singulier de dimension 1 sans autre restriction. Ces invariants, essentiellement donnés par des (a,b)-modules géométriques, (objet qui est une abstraction...

Sur les résidus de Baum-Bott

El Hadji Malick Dia (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

0n se donne une variété complexe V , compacte, de dimension complexe n , un champ de vecteurs v holomorphe sur V , un fibré vecoriel E de rang r au dessus de V et une -action θ v sur E . Il est bien connu que si v n’a pas de singularité, tous les nombres de Chern c I ( E ) [ V ] sont nuls ( | I | = n ). Si v a des singularités, Bott a démontré que ces nombres de Chern se localisent près de ces singularités donnant lieu à des résidus . Ces résidus ont été calculés d’abord par Bott dans le cas d’une singularité isolée non dégénérée,...

Surfeuilletages de feuilletages singuliers non dégénérés après un éclatement

Ludovic Landuré (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous étudions des feuilletages Levi-plats dont la partie complexe est un feuilletage holomorphe ayant une singularité isolée en l’origine de 2 . Nous montrons que, si la partie complexe est non dégénérée après un éclatement, alors le feuilletage Levi-plat et sa partie complexe sont chacun décrits par une intégrale première submersive sauf en l’origine.

Syzygies and logarithmic vector fields along plane curves

Alexandru Dimca, Edoardo Sernesi (2014)

Journal de l’École polytechnique — Mathématiques

We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve C and the stability of the sheaf of logarithmic vector fields along C , the freeness of the divisor C and the Torelli properties of C (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.

Currently displaying 61 – 76 of 76

Previous Page 4