Displaying 81 – 100 of 338

Showing per page

Convexity of sublevel sets of plurisubharmonic extremal functions

Finnur Lárusson, Patrice Lassere, Ragnar Sigurdsson (1998)

Annales Polonici Mathematici

Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function u E , X for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of u E , X are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.

Courants dynamiques pluripolaires

Xavier Buff (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

On montre l’existence d’applications rationnelles f : k k telles que f est algébriquement stable  : pour tout n 0 , deg f n = ( deg f ) n ,il existe un unique courant positif fermé T de bidegré ( 1 , 1 ) vérifiant f * T = d · T et k T ω k - 1 = 1 ω est la forme de Fubini-Study sur k et T est pluripolaire  : il existe un ensemble pluripolaire X k tel que X T ω k - 1 = 1

Croissance des fonctions plurisousharmoniques en dimension infinie

Christer O. Kiselman (1984)

Annales de l'institut Fourier

Les ensembles polaires dans C n , c’est-à-dire les ensembles où une fonction plurisousharmonique qui n’est pas - identiquement admet cette valeur, apparaissent comme des ensembles exceptionnels dans beaucoup de problèmes en analyse complexe. Par exemple, la croissance d’une fonction plurisousharmonique en une variable y quand une autre variable x est fixée est essentiellement la même pour tout x sauf quand x appartient à un ensemble polaire. Dans l’article un résultat très précis et général de cette...

Determination of the pluripolar hull of graphs of certain holomorphic functions

Armen Edigarian, Jan Wiegerinck (2004)

Annales de l’institut Fourier

Let A be a closed polar subset of a domain D in . We give a complete description of the pluripolar hull Γ D × * of the graph Γ of a holomorphic function defined on D A . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.

Disc formulas for the weighted Siciak-Zahariuta extremal function

Benedikt Steinar Magnússon, Ragnar Sigurdsson (2007)

Annales Polonici Mathematici

We prove a disc formula for the weighted Siciak-Zahariuta extremal function V X , q for an upper semicontinuous function q on an open connected subset X in ℂⁿ. This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.

Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties

Barbara Drinovec Drnovšek, Franc Forstnerič (2012)

Annales Polonici Mathematici

We establish plurisubharmonicity of envelopes of certain classical disc functionals on locally irreducible complex spaces, thereby generalizing the corresponding results for complex manifolds. We also find new formulae expressing the Siciak-Zaharyuta extremal function of an open set in a locally irreducible affine algebraic variety as the envelope of certain disc functionals, similarly to what has been done for open sets in ℂⁿ by Lempert and by Lárusson and Sigurdsson.

Distribution of nodes on algebraic curves in N

Thomas Bloom, Norman Levenberg (2003)

Annales de l’institut Fourier

Given an irreducible algebraic curves A in N , let m d be the dimension of the complex vector space of all holomorphic polynomials of degree at most d restricted to A . Let K be a nonpolar compact subset of A , and for each d = 1 , 2 , . . . , choose m d points { A d j } j = 1 , . . . , m d in K . Finally, let Λ d be the d -th Lebesgue constant of the array { A d j } ; i.e., Λ d is the operator norm of the Lagrange interpolation operator L d acting on C ( K ) , where L d ( f ) is the Lagrange interpolating polynomial for f of degree d at the points { A d j } j = 1 , . . . , m d . Using techniques of pluripotential...

Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory

Jeffrey Diller, Romain Dujardin, Vincent Guedj (2010)

Annales scientifiques de l'École Normale Supérieure

We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...

Dynamics semi-conjugated to a subshift for some polynomial mappings in C2.

Gabriel Vigny (2007)

Publicacions Matemàtiques

We study the dynamics near infinity of polynomial mappings f in C2. We assume that f has indeterminacy points and is non constant on the line at infinity L∞. If L∞ is f-attracting, we decompose the Green current along itineraries defined by the indeterminacy points and their preimages. The symbolic dynamics that arises is a subshift on an infinite alphabet.

Effective local finite generation of multiplier ideal sheaves

Dan Popovici (2010)

Annales de l’institut Fourier

Let ϕ be a psh function on a bounded pseudoconvex open set Ω n , and let ( m ϕ ) be the associated multiplier ideal sheaves, m . Motivated by global geometric issues, we establish an effective version of the coherence property of ( m ϕ ) as m + . Namely, given any B Ω , we estimate the asymptotic growth rate in m of the number of generators of ( m ϕ ) | B over 𝒪 Ω , as well as the growth of the coefficients of sections in Γ ( B , ( m ϕ ) ) with respect to finitely many generators globally defined on Ω . Our approach relies on proving asymptotic integral...

Equidistribution estimates for Fekete points on complex manifolds

Nir Lev, Joaquim Ortega-Cerdà (2016)

Journal of the European Mathematical Society

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich–Wasserstein distance of the Fekete points...

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

Currently displaying 81 – 100 of 338