Displaying 721 – 740 of 1421

Showing per page

Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations

Albert J. Milani, Hans Volkmer (2011)

Applications of Mathematics

We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation u t t + 2 u t - a i j ( u t , u ) i j u = f corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation - a i j ( 0 , v ) i j v = h . We then give conditions for the convergence, as t , of the solution of the evolution equation to its stationary state.

Long-time dynamics of an integro-differential equation describing the evolution of a spherical flame.

Hélène Rouzaud (2003)

Revista Matemática Complutense

This article is devoted to the study of a flame ball model, derived by G. Joulin, which satisfies a singular integro-differential equation. We prove that, when radiative heat losses are too important, the flame always quenches; when heat losses are smaller, it stabilizes or quenches, depending on an energy input parameter. We also examine the asymptotics of the radius for these different regimes.

Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource

L. M. Abia, O. Angulo, J. C. López-Marcos, M. A. López-Marcos (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we study the numerical approximation of a size-structured population model whose dependency on the environment is managed by the evolution of a vital resource. We show that this is a difficult task: some numerical methods are not suitable for a long-time integration. We analyze the reasons for the failure.

Long-time stability of noncharacteristic viscous boundary layers

Toan Nguyen, Kevin Zumbrun (2009/2010)

Séminaire Équations aux dérivées partielles

We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic...

Low Mach number limit for viscous compressible flows

Raphaël Danchin (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...

Low Mach number limit for viscous compressible flows

Raphaël Danchin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes...

Low Mach number limit of a compressible Euler-Korteweg model

Yajie Wang, Jianwei Yang (2023)

Applications of Mathematics

This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.

Lyapunov functions and L p -estimates for a class of reaction-diffusion systems

Dirk Horstmann (2001)

Colloquium Mathematicae

We give a sufficient condition for the existence of a Lyapunov function for the system aₜ = ∇(k(a,c)∇a - h(a,c)∇c), x ∈ Ω, t > 0, ε c = k c Δ c - f ( c ) c + g ( a , c ) , x ∈ Ω, t > 0, for Ω N , completed with either a = c = 0, or ∂a/∂n = ∂c/∂n = 0, or k(a,c) ∂a/∂n = h(a,c) ∂c/∂n, c = 0 on ∂Ω × t > 0. Furthermore we study the asymptotic behaviour of the solution and give some uniform L p -estimates.

Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

Currently displaying 721 – 740 of 1421