Existence and uniqueness results of positive solutions for nonvariational quasilinear elliptic systems.
We prove the existence of uniform attractors in the space for the nonautonomous nonclassical diffusion equation , ε ∈ [0,1]. The upper semicontinuity of the uniform attractors at ε = 0 is also studied.
We consider the existence, both locally and globally in time, the decay and the blow up of the solution for the extensible beam equation with nonlinear damping and source terms. We prove the existence of the solution by Banach contraction mapping principle. The decay estimates of the solution are proved by using Nakao’s inequality. Moreover, under suitable conditions on the initial datum, we prove that the solution blow up in finite time.
We study the existence of a weak solution to a Cauchy-Dirichlet problem for evolutional p-Laplacian systems with constant coefficients and principal term only. The initial-boundary data is assumed to be a bounded weak solution of an evolutional p-Laplacian system with an L¹-function as external force. The key ingredient is the maximum principle for weak solutions.
Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour et l’unicité est démontrée sous l’hypothèse plus restrictive Notre résultat...
We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ in Ω, ⎨ ⎩ u = 0 on ∂Ω, where (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.