Displaying 201 – 220 of 591

Showing per page

On radial limit functions for entire solutions of second order elliptic equations in R2.

André Boivin, Peter V. Paramonov (1998)

Publicacions Matemàtiques

Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.

On radially symmetric solutions of some chemotaxis system

Robert Stańczy (2009)

Banach Center Publications

This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.

On rates of propagation for Burgers’ equation

William Alan Day, Giuseppe Saccomandi (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give asymptotic formulae for the propagation of an initial disturbance of the Burgers’ equation.

On singular perturbation problems with Robin boundary condition

Henri Berestycki, Juncheng Wei (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the following singularly perturbed elliptic problem ϵ 2 Δ u - u + f ( u ) = 0 , u > 0 in Ω , ϵ u ν + λ u = 0 on Ω , where f satisfies some growth conditions, 0 λ + , and Ω N ( N > 1 ) is a smooth and bounded domain. The cases λ = 0 (Neumann problem) and λ = + (Dirichlet problem) have been studied by many authors in recent years. We show that, there exists a generic constant λ * > 1 such that, as ϵ 0 , the least energy solution has a spike near the boundary if λ λ * , and has an interior spike near the innermost part of the domain if λ > λ * . Central to our study is the corresponding problem...

On solutions of a perturbed fast diffusion equation

Ján Filo (1987)

Aplikace matematiky

The paper concerns the (local and global) existence, nonexistence, uniqueness and some properties of nonnegative solutions of a nonlinear density dependent diffusion equation with homogeneous Dirichlet boundary conditions.

On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul Park, Jeong Ja Bae (2000)

Czechoslovak Mathematical Journal

In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .

On solutions of the Schrödinger equation with radiation conditions at infinity : the long-range case

Yannick Gâtel, Dimitri Yafaev (1999)

Annales de l'institut Fourier

We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.

Currently displaying 201 – 220 of 591