An iteration method for nonlinear second order evolution equations
We study the uniqueness and L¹-stability of the Cauchy problem for a 2 × 2 system coming from the theory of granular media [9,10]. We work in a class of weak entropy solutions. The appearance of a multifunction in a source term, given by the Coulomb-Mohr friction law, requires a modification of definition of the weak entropy solution [5,6].
This paper presents a new observability estimate for parabolic equations in , where is a convex domain. The observation region is restricted over a product set of an open nonempty subset of and a subset of positive measure in . This estimate is derived with the aid of a quantitative unique continuation at one point in time. Applications to the bang-bang property for norm and time optimal control problems are provided.
We establish an optimal, linear rate of convergence for the stochastic homogenization of discrete linear elliptic equations. We consider the model problem of independent and identically distributed coefficients on a discretized unit torus. We show that the difference between the solution to the random problem on the discretized torus and the first two terms of the two-scale asymptotic expansion has the same scaling as in the periodic case. In particular the L2-norm in probability of the H1-norm...
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and deduce from it the long-time convergence. The main difficulty comes from natural degeneracy of birth terms that we overcome with a regularization technique. We then extend the results to the case with several parameters and recall the link between this...
So far optimal error estimates on Bakhvalov-type meshes are only known for finite difference and finite element methods solving linear convection-diffusion problems in the one-dimensional case. We prove (almost) optimal error estimates for problems with exponential boundary layers in two dimensions.
The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter , which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries....
In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the mth member of the class of algorithms () finds iteratively an approximation of the appropriate zero of the (m+1)st...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...
If is a polynomial in such that integrable, then the inverse Fourier transform of is a fundamental solution to the differential operator . The purpose of the article is to study the dependence of this fundamental solution on the polynomial . For it is shown that can be analytically continued to a Riemann space over the set of all polynomials of the same degree as . The singularities of this extension are studied.
We prove that any elliptic operator of second order in variational form is the infinitesimal generator of an analytic semigroup in the functional space consinsting of all derivatives of hölder-continuous functions in where is a domain in not necessarily bounded. We characterize, moreover the domain of the operator and the interpolation spaces between this and the space . We prove also that the spaces can be considered as extrapolation spaces relative to suitable non-variational operators....