Displaying 101 – 120 of 191

Showing per page

Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping

Abderrahmane Zaraï, Nasser-eddine Tatar (2010)

Archivum Mathematicum

A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25].

Global existence and regularity of solutions for complex Ginzburg-Landau equations

Stéphane Descombes, Mohand Moussaoui (2000)

Bollettino dell'Unione Matematica Italiana

Si considerano equazioni di Ginzburg-Landau complesse del tipo u t - α Δ u + P u 2 u = 0 in R N dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva α . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso α < C α , dove C dipende da K e N .

Global existence and stability of some semilinear problems

Mokhtar Kirane, Nasser-eddine Tatar (2000)

Archivum Mathematicum

We prove global existence and stability results for a semilinear parabolic equation, a semilinear functional equation and a semilinear integral equation using an inequality which may be viewed as a nonlinear singular version of the well known Gronwall and Bihari inequalities.

Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids

Irena Pawłow, Wojciech M. Zajączkowski (2008)

Banach Center Publications

In this paper we study the Cahn-Hilliard-Gurtin system describing the phase-separation process in elastic solids. The system has been derived by Gurtin (1996) as an extension of the classical Cahn-Hilliard equation. For a version with viscosity we prove the existence and uniqueness of a weak solution on an infinite time interval and derive an absorbing set estimate.

Global existence for a quasilinear wave equation outside of star-shaped domains

Hart F. Smith (2001)

Journées équations aux dérivées partielles

This talk describes joint work with Chris Sogge and Markus Keel, in which we establish a global existence theorem for null-type quasilinear wave equations in three space dimensions, where we impose Dirichlet conditions on a smooth, compact star-shaped obstacle 𝒦 3 . The key tool, following Christodoulou [1], is to use the Penrose compactification of Minkowski space. In the case under consideration, this reduces matters to a local existence theorem for a singular obstacle problem. Full details will...

Global existence for coupled Klein-Gordon equations with different speeds

Pierre Germain (2011)

Annales de l’institut Fourier

Consider, in dimension 3, a system of coupled Klein-Gordon equations with different speeds, and an arbitrary quadratic nonlinearity. We show, for data which are small, smooth, and localized, that a global solution exists, and that it scatters. The proof relies on the space-time resonance approach; it turns out that the resonant structure of this equation has features which were not studied before, but which are generic in some sense.

Global existence for nonlinear system of wave equations in 3-D domains

Jianwei Yang (2011)

Applicationes Mathematicae

We study the initial-boundary problem for a nonlinear system of wave equations with Hamilton structure under Dirichlet's condition. We use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math. Soc. 21 (2008), 831-845], Morawetz-Pohožaev's identity derived in [Miao and Zhu, Nonlinear Anal. 67 (2007), 3136-3151], and an a priori estimate of the solutions restricted to the boundary to show the existence of global and unique solutions.

Global existence of smooth solutions for the compressible viscous fluid flow with radiation in 3

Hyejong O, Hakho Hong, Jongsung Kim (2023)

Applications of Mathematics

This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in [ 0 , ) , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.

Global existence of solutions to Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

We prove the existence of global and regular solutions to the Navier-Stokes equations in cylindrical type domains under boundary slip conditions, where coordinates are chosen so that the x₃-axis is parallel to the axis of the cylinder. Regular solutions have already been obtained on the interval [0,T], where T > 0 is large, on the assumption that the L₂-norms of the third component of the force field, of derivatives of the force field, and of the velocity field with respect to the direction of...

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Currently displaying 101 – 120 of 191