Regularity of solutions to a one dimensional plasticity model
In this paper, the authors introduce a kind of local Hardy spaces in Rn associated with the local Herz spaces. Then the authors investigate the regularity in these local Hardy spaces of some nonlinear quantities on superharmonic functions on R2. The main results of the authors extend the corresponding results of Evans and Müller in a recent paper.
We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of in a smooth bounded domain . In particular, we obtain new and bounds for the extremal solution when the domain is strictly convex. More precisely, we prove that if and if .
Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in .
Partial regularity of solutions to a class of second order nonlinear parabolic systems with non-smooth in time principal matrices is proved in the paper. The coefficients are assumed to be measurable and bounded in the time variable and VMO-smooth in the space variables uniformly with respect to time. To prove the result, we apply the so-called -caloric approximation method. The method was applied by the authors earlier to study regularity of quasilinear systems.
In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded subset of is studied. Regularity properties of the solutions are proved, when the data are -functions or Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are given.
Existence of a global attractor for the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has been shown already. In this paper we prove the higher regularity of the attractor.