Displaying 121 – 140 of 212

Showing per page

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let y ( h ) ( t , x ) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n ( n + 1 ) / 2 unknown functions a i j by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for h , 1 0 . The proof is...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let y(h)(t,x) be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term h, and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices for...

Local attractivity in nonautonomous semilinear evolution equations

Joël Blot, Constantin Buşe, Philippe Cieutat (2014)

Nonautonomous Dynamical Systems

We study the local attractivity of mild solutions of equations in the form u’(t) = A(t)u(t) + f (t, u(t)), where A(t) are (possible) unbounded linear operators in a Banach space and where f is a (possible) nonlinear mapping. Under conditions of exponential stability of the linear part, we establish the local attractivity of various kinds of mild solutions. To obtain these results we provide several results on the Nemytskii operators on the space of the functions which converge to zero at infinity...

Local center manifold for parabolic equations with infinite delay

Hana Petzeltová (1994)

Mathematica Bohemica

The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.

Local energy decay for several evolution equations on asymptotically euclidean manifolds

Jean-François Bony, Dietrich Häfner (2012)

Annales scientifiques de l'École Normale Supérieure

Let  P be a long range metric perturbation of the Euclidean Laplacian on  d , d 2 . We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to  P . The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group e i t f ( P ) where f has a suitable development at zero (resp. infinity).

Local Energy Decay in Even Dimensions for the Wave Equation with a Time-Periodic Non-Trapping Metric and Applications to Strichartz Estimates

Kian, Yavar (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35B40, 35L15.We obtain local energy decay as well as global Strichartz estimates for the solutions u of the wave equation ∂t2 u-divx(a(t,x)∇xu) = 0, t ∈ R, x ∈ Rn, with time-periodic non-trapping metric a(t,x) equal to 1 outside a compact set with respect to x. We suppose that the cut-off resolvent Rχ(θ) = χ(U(T, 0)− e−iθ)−1χ, where U(T, 0) is the monodromy operator and T the period of a(t,x), admits an holomorphic continuation to {θ ∈ C : Im(θ) ≥ 0}, for...

Currently displaying 121 – 140 of 212