Displaying 141 – 160 of 183

Showing per page

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the...

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary...

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary...

Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence

Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson (2010)

Applications of Mathematics

We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.

Homogenization of some nonlinear problems with specific dependence upon coordinates

P. Courilleau, S. Fabre, J. Mossino (2001)

Bollettino dell'Unione Matematica Italiana

Questo articolo considera una successione di equazioni differenziali a derivate parziali non lineari in forma di divergenza del tipo - div Q ϵ G x , N ϵ u = f ϵ , in un dominio limitato Ω dello spazio n -dimensionale; Q ϵ = Q ϵ x e N ϵ = N ϵ x sono matrici con coefficenti limitati, N ϵ e è invertibile e la sua matrice inversa R ϵ ha anche coefficenti limitati. La non linearità è dovuta alla funzione G = G x , ξ ; la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate sul p -Laplaciano, 1 < p < , ed assicurano l'esistenza di una soluzione...

Homogenization of some parabolic operators with several time scales

Liselott Flodén, Marianne Olsson (2007)

Applications of Mathematics

The main focus in this paper is on homogenization of the parabolic problem t u ε - · ( a ( x / ε , t / ε , t / ε r ) u ε ) = f . Under certain assumptions on a , there exists a G -limit b , which we characterize by means of multiscale techniques for r > 0 , r 1 . Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.

Homogenization of systems with equi-integrable coefficients

Marc Briane, Juan Casado-Díaz (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a H-convergence type result for the homogenization of systems the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability condition. The equi-integrability assumption allows us to control the fact that the coefficients are not equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued systems, we present an alternative approach based on an approximation result by Lipschitz functions due to...

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the criticality spectral equation in neutron transport

Grégoire Allaire, Guillaume Bal (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. One term is the first eigenvector of the transport equation in the periodicity cell. The other term is the...

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Homogenization of the transport equation describing convection-diffusion processes in a material with fine periodic structure

Šilhánek, David, Beneš, Michal (2023)

Programs and Algorithms of Numerical Mathematics

In the present contribution we discuss mathematical homogenization and numerical solution of the elliptic problem describing convection-diffusion processes in a material with fine periodic structure. Transport processes such as heat conduction or transport of contaminants through porous media are typically associated with convection-diffusion equations. It is well known that the application of the classical Galerkin finite element method is inappropriate in this case since the discrete solution...

Homogenization of thin piezoelectric perforated shells

Marius Ghergu, Georges Griso, Houari Mechkour, Bernadette Miara (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined...

Currently displaying 141 – 160 of 183