Displaying 341 – 360 of 664

Showing per page

On Synge-type angle condition for d -simplices

Antti Hannukainen, Sergey Korotov, Michal Křížek (2017)

Applications of Mathematics

The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in d that degenerate in some way.

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy (2014)

Mathematica Bohemica

We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with Dirichlet...

Currently displaying 341 – 360 of 664