Displaying 21 – 40 of 71

Showing per page

Solution of the Dirichlet problem for the Laplace equation

Dagmar Medková (1999)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.

Solution of the Neumann problem for the Laplace equation

Dagmar Medková (1998)

Czechoslovak Mathematical Journal

For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.

Solution of the Robin problem for the Laplace equation

Dagmar Medková (1998)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

Solvability of the Poisson equation in weighted Sobolev spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

The aim of this paper is to prove the existence of solutions to the Poisson equation in weighted Sobolev spaces, where the weight is the distance to some distinguished axis, raised to a negative power. Therefore we are looking for solutions which vanish sufficiently fast near the axis. Such a result is useful in the proof of the existence of global regular solutions to the Navier-Stokes equations which are close to axially symmetric solutions.

Some mixed finite element methods on anisotropic meshes

Mohamed Farhloul, Serge Nicaise, Luc Paquet (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...

Some mixed finite element methods on anisotropic meshes

Mohamed Farhloul, Serge Nicaise, Luc Paquet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...

Some possibly degenerate elliptic problems with measure data and non linearity on the boundary

Thierry Gallouët, Yannick Sire (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

The goal of this paper is to study some possibly degenerate elliptic equation in a bounded domain with a nonlinear boundary condition involving measure data. We investigate two types of problems: the first one deals with the laplacian in a bounded domain with measure supported on the domain and on the boundary. A second one deals with the same type of data but involves a degenerate weight in the equation. In both cases, the nonlinearity under consideration lies on the boundary. For the first problem,...

Currently displaying 21 – 40 of 71