Displaying 41 – 60 of 61

Showing per page

The successive approximation method for the Dirichlet problem in a planar domain

Dagmar Medková (2008)

Applicationes Mathematicae

The Dirichlet problem for the Laplace equation for a planar domain with piecewise-smooth boundary is studied using the indirect integral equation method. The domain is bounded or unbounded. It is not supposed that the boundary is connected. The boundary conditions are continuous or p-integrable functions. It is proved that a solution of the corresponding integral equation can be obtained using the successive approximation method.

The third boundary value problem in potential theory for domains with a piecewise smooth boundary

Dagmar Medková (1997)

Czechoslovak Mathematical Journal

The paper investigates the third boundary value problem u n + λ u = μ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where ν is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure T ν . Denote by T ν T ν the corresponding operator on the space of signed measures on the boundary of the investigated domain G . If there is α 0 such that the essential spectral radius of ( α I - T ) is...

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Theoretical aspects of a multiscale analysis of the eigenoscillations of the Earth.

Volker Michel (2003)

Revista Matemática Complutense

The elastic behaviour of the Earth, including its eigenoscillations, is usually described by the Cauchy-Navier equation. Using a standard approach in seismology we apply the Helmholtz decomposition theorem to transform the Fourier transformed Cauchy-Navier equation into two non-coupled Helmholtz equations and then derive sequences of fundamental solutions for this pair of equations using the Mie representation. Those solutions are denoted by the Hansen vectors Ln,j, Mn,j, and Nn,j in geophysics....

Total overlapping Schwarz' preconditioners for elliptic problems

Faker Ben Belgacem, Nabil Gmati, Faten Jelassi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math. 336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the behavior of the solution...

Total overlapping Schwarz' preconditioners for elliptic problems

Faker Ben Belgacem, Nabil Gmati, Faten Jelassi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

A variant of the Total Overlapping Schwarz (TOS) method has been introduced in [Ben Belgacem et al., C. R. Acad. Sci., Sér. 1 Math.336 (2003) 277–282] as an iterative algorithm to approximate the absorbing boundary condition, in unbounded domains. That same method turns to be an efficient tool to make numerical zooms in regions of a particular interest. The TOS method enjoys, then, the ability to compute small structures one wants to capture and the reliability to obtain the...

Transfer of boundary conditions for difference equations

Emil Vitásek (2000)

Applications of Mathematics

It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems.

Transfer of boundary conditions for Poisson's equation on a circle

Jiří Taufer, Emil Vitásek (1994)

Applications of Mathematics

The method of transfer of boundary conditions yields a universal frame into which most methods for solving boundary value problems for ordinary differential equations can be included. The purpose of this paper is to show a possibility to extend the idea of transfer of conditions to a particular twodimensional problem.

Currently displaying 41 – 60 of 61