Displaying 101 – 120 of 664

Showing per page

Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian

Pedro Ricardo Simão Antunes, Pedro Freitas, James Bernard Kennedy (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further...

Asymptotic distribution of eigenfrequencies for damped wave equations

Johannes Sjöstrand (2000)

Journées équations aux dérivées partielles

Il est bien connu que les fréquences propres associées à un d'Alembertien amorti sont confinées dans une bande parallèle à l'axe réel. Nous rappelons l'asymptotique de Weyl pour la distribution des parties réelles des fréquences propres, nous montrons que «presque toutes» les fréquences propres appartiennent à une bande déterminée par la limite de Birkhoff du coefficient d'amortissement. Nous montrons aussi que certaines moyennes des parties imaginaires convergent vers la moyenne du coefficient...

Asymptotic models for scattering from unbounded media with high conductivity

Houssem Haddar, Armin Lechleiter (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...

Asymptotic Property of Eigenvalues and Eigenfunctions of the Laplace Operator in Domain with a Perturbed Boundary

Khelifi, Abdessatar (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 35J05, 35C15, 44P05In this paper, we consider the variations of eigenvalues and eigenfunctions for the Laplace operator with homogeneous Dirichlet boundary conditions under deformation of the underlying domain of definition. We derive recursive formulas for the Taylor coefficients of the eigenvalues as functions of the shape-perturbation parameter and we establish the existence of a set of eigenfunctions that is jointly holomorphic in the spatial and boundary-variation ...

Boundary augmented Lagrangian method for the Signorini problem

Shougui Zhang, Xiaolin Li (2016)

Applications of Mathematics

An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented...

Currently displaying 101 – 120 of 664