Displaying 121 – 140 of 165

Showing per page

On phase segregation in nonlocal two-particle Hartree systems

Walter Aschbacher, Marco Squassina (2009)

Open Mathematics

We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.

On the Lawrence–Doniach model of superconductivity: magnetic fields parallel to the axes

Stan Alama, Lia Bronsard, Etienne Sandier (2012)

Journal of the European Mathematical Society

We consider periodic minimizers of the Lawrence–Doniach functional, which models highly anisotropic superconductors with layered structure, in the simultaneous limit as the layer thickness tends to zero and the Ginzburg–Landau parameter tends to infinity. In particular, we consider the properties of minimizers when the system is subjected to an external magnetic field applied either tangentially or normally to the superconducting planes. For normally applied fields, our results show that the resulting...

On the regularity of local minimizers of decomposable variational integrals on domains in 2

Michael Bildhauer, Martin Fuchs (2007)

Commentationes Mathematicae Universitatis Carolinae

We consider local minimizers u : 2 Ω N of variational integrals like Ω [ ( 1 + | 1 u | 2 ) p / 2 + ( 1 + | 2 u | 2 ) q / 2 ] d x or its degenerate variant Ω [ | 1 u | p + | 2 u | q ] d x with exponents 2 p < q < which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior C 1 , α - respectively C 1 -regularity of u under the condition that q < 2 p . For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.

On the well-posedness and regularity of the wave equation with variable coefficients

Bao-Zhu Guo, Zhi-Xiong Zhang (2007)

ESAIM: Control, Optimisation and Calculus of Variations

An open-loop system of a multidimensional wave equation with variable coefficients, partial boundary Dirichlet control and collocated observation is considered. It is shown that the system is well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. The Riemannian geometry method is used in the proof of regularity and the feedthrough operator is explicitly computed.

On very weak solutions of a class of nonlinear elliptic systems

Menita Carozza, Antonia Passarelli di Napoli (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove a regularity result for very weak solutions of equations of the type - div A ( x , u , D u ) = B ( x , u , D u ) , where A , B grow in the gradient like t p - 1 and B ( x , u , D u ) is not in divergence form. Namely we prove that a very weak solution u W 1 , r of our equation belongs to W 1 , p . We also prove global higher integrability for a very weak solution for the Dirichlet problem - div A ( x , u , D u ) = B ( x , u , D u ) in Ω , u - u o W 1 , r ( Ω , m ) .

Peak solutions for an elliptic system of FitzHugh-Nagumo type

Edward Norman Dancer, Shusen Yan (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The aim of this paper is to study the existence of various types of peak solutions for an elliptic system of FitzHugh-Nagumo type. We prove that the system has a single peak solution, which concentrates near the boundary of the domain. Under some extra assumptions, we also construct multi-peak solutions with all the peaks near the boundary, and a single peak solution with its peak near an interior point of the domain.

Currently displaying 121 – 140 of 165