Displaying 1261 – 1280 of 1373

Showing per page

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions u ε of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N 2 , where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε 0 , is to establish uniform L p bounds for the gradient, for some p > 1 . We review some recent techniques developed in...

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions uE of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N ≥ 2, where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of uE, as ε → 0, is to establish uniform Lp bounds for the gradient, for some p>1. We review some...

Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations

Guy Barles, Alessio Porretta (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a class of stationary viscous Hamilton-Jacobi equations aswhere λ 0 , A ( x ) is a bounded and uniformly elliptic matrix and H ( x , ξ ) is convex in ξ and grows at most like | ξ | q + f ( x ) , with 1 < q < 2 and f L N / q ' ( Ω ) . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e. ( 1 + | u | ) q ¯ - 1 u H 0 1 ( Ω ) , for a certain (optimal) exponent q ¯ . This completes the recent results in [15],...

Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L 1 ( Ω )

M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is - div ( a ( x ) ( 1 + | u | 2 ) p - 2 2 u ) + b ( x ) ( 1 + | u | 2 ) λ 2 = f in Ω , u = 0 on Ω , where Ω is a bounded open subset of N , N 2 , 2 - 1 / N < p < N , a belongs to L ( Ω ) , a ( x ) α 0 > 0 , f is a function in L 1 ( Ω ) , b is a function in L r ( Ω ) and 0 λ < λ * ( N , p , r ) , for some r and λ * ( N , p , r ) .

Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L1(Ω)

M. F. Betta, A. Mercaldo, F. Murat, M. M. Porzio (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is
 - div ( a ( x ) ( 1 + | u | 2 ) p - 2 2 u ) + b ( x ) ( 1 + | u | 2 ) λ 2 = f in Ω , u = 0 on Ω , 
where Ω is a bounded open subset of N , N > 2, 2-1/N < p < N , a belongs to L∞(Ω), a ( x ) α 0 > 0 , f is a function in L1(Ω), b is a function in L r ( Ω ) and 0 ≤ λ < λ *(N,p,r), for some r and λ *(N,p,r).

Currently displaying 1261 – 1280 of 1373