Displaying 561 – 580 of 850

Showing per page

On the stability of solutions of nonlinear parabolic differential-functional equations

Stanisław Brzychczy (1996)

Annales Polonici Mathematici

We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x)     for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x)     for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0  for x ∈ G, ⎨z(x) = h(x)    for x ∈ ∂G ⎩ where x = ( x , . . . , x m ) G m , G is an open and bounded domain with C 2 + α (0 < α ≤ 1) boundary, the operator     Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is...

On two problems studied by A. Ambrosetti

David Arcoya, José Carmona (2006)

Journal of the European Mathematical Society

We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems.We prove for the first one the existence of a continuum of solutions with shape of a reflected C ( -shape). Next, we show that there is a relationship between these two problems.

Optimal control of an ill-posed elliptic semilinear equation with an exponential non linearity

E. Casas, O. Kavian, J.-P. Puel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study here an optimal control problem for a semilinear elliptic equation with an exponential nonlinearity, such that we cannot expect to have a solution of the state equation for any given control. We then have to speak of pairs (control, state). After having defined a suitable functional class in which we look for solutions, we prove existence of an optimal pair for a large class of cost functions using a non standard compactness argument. Then, we derive a first order optimality system assuming...

Periodic parabolic problems with nonlinearities indefinite in sign.

Tomás Godoy, Uriel Kaufmann (2007)

Publicacions Matemàtiques

Let Ω ⊂ RN be a smooth bounded domain. We give sufficient conditions (which are also necessary in many cases) on two nonnegative functions a, b that are possibly discontinuous and unbounded for the existence of nonnegative solutions for semilinear Dirichlet periodic parabolic problems of the form Lu = λa (x, t) up - b (x, t) uq in Ω × R, where 0 &lt; p, q &lt; 1 and λ &gt; 0. In some cases we also show the existence of solutions uλ in the interior of the positive cone and that uλ can...

Persistence of Coron’s solution in nearly critical problems

Monica Musso, Angela Pistoia (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the problem - Δ u = u N + 2 N - 2 + λ in Ω ε ω , u &gt; 0 in Ω ε ω , u = 0 on Ω ε ω , where Ω and ω are smooth bounded domains in N , N 3 , ε &gt; 0 and λ . We prove that if the size of the hole ε goes to zero and if, simultaneously, the parameter λ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Currently displaying 561 – 580 of 850