Some surprising results on a one-dimensional elliptic boundary value blow-up problem.
The present paper studies second order partial differential equations in two independent variables of the form Div(ρ1|u,1|n-1u,1, ρ2|u,2|n-1u,2) = 0. We obtain decay estimates for the solutions in a semi-infinite strip. The results may be seen as theorems of Phragmen-Lindelof type. The method is strongly based on the ideas of Horgan and Payne [5], [6], [8].
This article is devoted to the study of a perturbation with a viscosity term in an elliptic equation involving the p-Laplacian operator and related to the best contant problem in Sobolev inequalities in the critical case. We prove first that this problem, together with the equation, is stable under this perturbation, assuming some conditions on the datas. In the next section, we show that the zero solution is strongly isolated in some sense, among the space of the solutions. Actually, we end the...
In this paper we furnish mean value characterizations for subharmonic functions related to linear second order partial differential operators with nonnegative characteristic form, possessing a well-behaved fundamental solution . These characterizations are based on suitable average operators on the level sets of . Asymptotic characterizations are also considered, extending classical results of Blaschke, Privaloff, Radó, Beckenbach, Reade and Saks. We analyze as well the notion of subharmonic function...