(A,O)-эллиптические уравнения со слабым вырождением
The thermoelastic stresses created in a solid phase domain in the course of solidification of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. This problem, obtained from a real situation by many simplifications, contains a moving boundary between the solid and the liquid phase domains. To make the usage of standard numerical packages possible, we propose here a fixed-domain approximation by means of including the liquid phase domain into the problem (in...
Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.
We prove that minimizers of the functional , ⊂ , n ≥ 3, which satisfy the Dirichlet boundary condition on for g: → with zero topological degree, converge in and for any α<1 - upon passing to a subsequence - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.
We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the formOur setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in and and of the Bernstein problem on the flatness of minimal area graphs in . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach...