Displaying 181 – 200 of 207

Showing per page

Résonances près d’une énergie critique

Jean-François Bony (2001/2002)

Séminaire Équations aux dérivées partielles

Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique P = - h 2 Δ + V ( x ) dans des petits disques centrés en E 0 > 0 , une valeur critique de p ( x , ξ ) = ξ 2 + V ( x ) .

Resonant delocalization for random Schrödinger operators on tree graphs

Michael Aizenman, Simone Warzel (2013)

Journal of the European Mathematical Society

We analyse the spectral phase diagram of Schrödinger operators T + λ V on regular tree graphs, with T the graph adjacency operator and V a random potential given by i i d random variables. The main result is a criterion for the emergence of absolutely continuous ( a c ) spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials a c spectrum appears at arbitrarily weak disorder ( λ 1 ) in an energy regime which extends beyond the spectrum of T . Incorporating...

Retractions onto the Space of Continuous Divergence-free Vector Fields

Philippe Bouafia (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that there does not exist a uniformly continuous retraction from the space of continuous vector fields onto the subspace of vector fields whose divergence vanishes in the distributional sense. We then generalise this result using the concept of m -charges, introduced by De Pauw, Moonens, and Pfeffer: on any subset X n satisfying a mild geometric condition, there is no uniformly continuous representation operator for m -charges in X .

Currently displaying 181 – 200 of 207