Displaying 2721 – 2740 of 5493

Showing per page

On a Class of Elliptic Equations for the N-Laplacian in R^n with One-Sided Exponential Growth

Candela, Anna Maria, Squassina, Marco (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30By means of a suitable nonsmooth critical point theory for lower semicontinuous functionals we prove the existence of infinitely many solutions for a class of quasilinear Dirichlet problems with symmetric non-linearities having a one-sided growth condition of exponential type.The research of the authors was partially supported by the MIUR project “Variational and topological methods in the study of nonlinear phenomena” (COFIN 2001)....

On a class of elliptic operators with unbounded coefficients in convex domains

Giuseppe Da Prato, Alessandra Lunardi (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the realization A of the operator A = 1 2 - ( D U , D ) in L 2 Ω , μ , where Ω is a possibly unbounded convex open set in R N , U is a convex unbounded function such that lim x Ω , x Ω U x = + and lim x + , x Ω U x = + , D U x is the element with minimal norm in the subdifferential of U at x , and μ d x = c exp - 2 U x d x is a probability measure, infinitesimally invariant for A . We show that A , with domain D A = u H 2 Ω , μ : D U , D u L 2 Ω , μ is a dissipative self-adjoint operator in L 2 Ω , μ . Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow...

On a class of nonlinear problems involving a p ( x ) -Laplace type operator

Mihai Mihăilescu (2008)

Czechoslovak Mathematical Journal

We study the boundary value problem - d i v ( ( | u | p 1 ( x ) - 2 + | u | p 2 ( x ) - 2 ) u ) = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a smooth bounded domain in N . Our attention is focused on two cases when f ( x , u ) = ± ( - λ | u | m ( x ) - 2 u + | u | q ( x ) - 2 u ) , where m ( x ) = max { p 1 ( x ) , p 2 ( x ) } for any x Ω ¯ or m ( x ) < q ( x ) < N · m ( x ) ( N - m ( x ) ) for any x Ω ¯ . In the former case we show the existence of infinitely many weak solutions for any λ > 0 . In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a 2 -symmetric version for even functionals...

On a class of nonlocal problem involving a critical exponent

Anass Ourraoui (2015)

Communications in Mathematics

In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

On a class of ( p , q ) -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

M.S. Shahrokhi-Dehkordi (2017)

Communications in Mathematics

Let Ω n be a bounded starshaped domain and consider the ( p , q ) -Laplacian problem - Δ p u - Δ q u = λ ( 𝐱 ) | u | p - 2 u + μ | u | r - 2 u where μ is a positive parameter, 1 < q p < n , r p and p : = n p n - p is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the ( p , q ) -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

Currently displaying 2721 – 2740 of 5493