Stabilization of the Schrödinger equation.
Several Liouville-type theorems are presented for stable solutions of the equation in , where is a general convex, nondecreasing function. Extensions to solutions which are merely stable outside a compact set are discussed.
The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.
We investigate stationary energy models in heterostructures consisting of continuity equations for all involved species, of a Poisson equation for the electrostatic potential and of an energy balance equation. The resulting strongly coupled system of elliptic differential equations has to be supplemented by mixed boundary conditions. If the boundary data are compatible with thermodynamic equilibrium then there exists a unique steady state. We prove that in a suitable neighbourhood of such a thermodynamic...
In questo articolo studiamo problemi di Dirichlet singolari, lineari e semilineari, della forma in , su , dove è un dominio in e o con (o nonlinearità più generali). In tali problemi bidimensionali emergono alcune difficoltà a causa della non validità della disuguaglianza di Hardy in e a causa delle invarianze dell'equazione . Pertanto opportune condizioni su e sono necessarie al fine di garantire l'esistenza di una soluzione positiva. Per esempio, se è una curva non costante...
In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution...
Two species of animals are competing in the same environment. Under what conditions do they coexist peacefully? Or under what conditions does either one of the two species become extinct, that is, is either one of the two species excluded by the other? It is natural to say that they can coexist peacefully if their rates of reproduction and self-limitation are relatively larger than those of competition rates. In other words, they can survive if they interact strongly among themselves and weakly...
Steady-state system of equations for incompressible, possibly non-Newtonean of the -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain , or 3, with heat sources allowed to have a natural -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if (for ) or if (for ).