Displaying 41 – 60 of 129

Showing per page

Un problema di Riemann-Hilbert non regolare per una coppia di operatori ellittici di ordine 2 m .

Mario Tosques (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the problem of finding a couple of solutions ( u + , u - ) satisfying the following conditions (4) and (5) for a couple of two uniformly elliptic partial differential operators A + and A - of order 2 m in a non regular situation.

Un risultato di perturbazione per una classe di problemi ellittici variazionali di tipo superlineare

Luisa Di Piazza (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera il problema al contorno - Δ u = f ( x , u ) + ϵ ψ ( x , u ) in Ω , u | Ω = 0 , dove Ω n è un aperto limitato e connesso ed ϵ è un parametro reale. Si prova che, se f ( x , s ) + ϵ ψ ( x , s ) è «superlineare» ed ϵ è abbastanza piccolo, il problema precedente ha almeno tre soluzioni distinte.

Uncertainty principles for orthonormal bases

Philippe Jaming (2005/2006)

Séminaire Équations aux dérivées partielles

In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks...). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro.Finally, we reformulate some uncertainty principles in terms of properties of the free heat and shrödinger equations.

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal...

Currently displaying 41 – 60 of 129