Displaying 61 – 80 of 129

Showing per page

Une méthode intégrale de frontière. Application au Laplacien et à l'élasticité.

Marie-Thérèse Lacroix (1991)

Revista Matemática de la Universidad Complutense de Madrid

The aim of the paper is to give a method to solve boundary value problems associated to the Helmholtz equation and to the operator of elasticity. We transform these problems in problems on the boundary Gamma of an open set of R3. After introducing a symplectic form on H1,2(G) x H-1,2(G) we obtain the adjoint of the boundary operator employed. Then the boundary problem has a solution if and only if the boundary conditions are orthogonal, for this bilinear form, to the elements of the kernel, in a...

Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés

Abdelkader Laazizi, Nagib Guessous (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider second order neutrons diffusion problem with coefficients in L∞(Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions [1] in which the coefficients appear. The rate of convergence obtained is O(h2) in L2(Ω), with a free rectangular triangulation.

Uniform bounds for quotients of Green functions on C 1 , 1 -domains

H. Hueber, M. Sieveking (1982)

Annales de l'institut Fourier

Let Δ u = Σ i 2 x i 2 , L u = Σ i , j a i j 2 x i x j u + Σ i b i x i u + c u be elliptic operators with Hölder continuous coefficients on a bounded domain Ω R n of class C 1 , 1 . There is a constant c > 0 depending only on the Hölder norms of the coefficients of L and its constant of ellipticity such that c - 1 G Δ Ω G L Ω c G Δ Ω on Ω × Ω , where γ Δ Ω (resp. G L Ω ) are the Green functions of Δ (resp. L ) on Ω .

Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation

Huangxin Chen, Ronald H. W. Hoppe, Xuejun Xu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...

Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation∗

Huangxin Chen, Ronald H.W. Hoppe, Xuejun Xu (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions u ε of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N 2 , where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε 0 , is to establish uniform L p bounds for the gradient, for some p > 1 . We review some recent techniques developed in...

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions uE of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N ≥ 2, where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of uE, as ε → 0, is to establish uniform Lp bounds for the gradient, for some p>1. We review some...

Uniform Lipschitz estimates in stochastic homogenization

Scott Armstrong (2014)

Journées Équations aux dérivées partielles

We review some recent results in quantitative stochastic homogenization for divergence-form, quasilinear elliptic equations. In particular, we are interested in obtaining L -type bounds on the gradient of solutions and thus giving a demonstration of the principle that solutions of equations with random coefficients have much better regularity (with overwhelming probability) than a general equation with non-constant coefficients.

Currently displaying 61 – 80 of 129