Displaying 581 – 600 of 5493

Showing per page

An overdetermined elliptic problem in a domain with countably rectifiable boundary

Przemysław Górka (2007)

Colloquium Mathematicae

We examine an elliptic equation in a domain Ω whose boundary ∂Ω is countably (m-1)-rectifiable. We also assume that ∂Ω satisfies a geometrical condition. We are interested in an overdetermined boundary value problem (examined by Serrin [Arch. Ration. Mech. Anal. 43 (1971)] for classical solutions on domains with smooth boundary). We show that existence of a solution of this problem implies that Ω is an m-dimensional Euclidean ball.

Analysis of a non-standard mixed finite element method with applications to superconvergence

Jan Brandts (2009)

Applications of Mathematics

We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive...

Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes

Jérôme Bonelle, Alexandre Ern (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Compatible schemes localize degrees of freedom according to the physical nature of the underlying fields and operate a clear distinction between topological laws and closure relations. For elliptic problems, the cornerstone in the scheme design is the discrete Hodge operator linking gradients to fluxes by means of a dual mesh, while a structure-preserving discretization is employed for the gradient and divergence operators. The discrete Hodge operator is sparse, symmetric positive definite and is...

Currently displaying 581 – 600 of 5493