Displaying 681 – 700 of 5493

Showing per page

Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits

Didier Robert, H. Tamura (1989)

Annales de l'institut Fourier

We study the semi-classical asymptotic behavior as ( h 0 ) of scattering amplitudes for Schrödinger operators - ( 1 / 2 ) h 2 Δ + V . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.

Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential

Veronica Felli, Alberto Ferrero, Susanna Terracini (2011)

Journal of the European Mathematical Society

Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.

Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian

Pedro Ricardo Simão Antunes, Pedro Freitas, James Bernard Kennedy (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further...

Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

Dimitri Mugnai (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal theorem.

Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

Dimitri Mugnai (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant's Nodal theorem.

Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach

Fabio Paronetto (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equations t ( r h u ) - div ( a h · D u ) with r h ( x , t ) 0 , r h L ( Ω × ( 0 , T ) ) . The main problem is the lack of compactness, by-passed via a regularity result. As particular cases, we obtain G-convergence for elliptic operators ( r h 0 ) , G-convergence for parabolic operators ( r h 1 ) , singular perturbations of an elliptic operator ( a h a and r h r , possibly r 0 ) .

Asymptotic distribution of eigenfrequencies for damped wave equations

Johannes Sjöstrand (2000)

Journées équations aux dérivées partielles

Il est bien connu que les fréquences propres associées à un d'Alembertien amorti sont confinées dans une bande parallèle à l'axe réel. Nous rappelons l'asymptotique de Weyl pour la distribution des parties réelles des fréquences propres, nous montrons que «presque toutes» les fréquences propres appartiennent à une bande déterminée par la limite de Birkhoff du coefficient d'amortissement. Nous montrons aussi que certaines moyennes des parties imaginaires convergent vers la moyenne du coefficient...

Currently displaying 681 – 700 of 5493