Displaying 61 – 80 of 200

Showing per page

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems

Martin Kahlbacher, Stefan Volkwein (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems∗

Martin Kahlbacher, Stefan Volkwein (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD...

Pointwise and locally uniform convergence of holomorphic and harmonic functions

Libuše Štěpničková (1999)

Commentationes Mathematicae Universitatis Carolinae

We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.

Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s

Alberto Farina, Enrico Valdinoci (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We prove pointwise gradient bounds for entire solutions of pde’s of the form      ℒu(x) = ψ(x, u(x), ∇u(x)), where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.

Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points

Jan Malý (1996)

Commentationes Mathematicae Universitatis Carolinae

Let u be a weak solution of a quasilinear elliptic equation of the growth p with a measure right hand term μ . We estimate u ( z ) at an interior point z of the domain Ω , or an irregular boundary point z Ω , in terms of a norm of u , a nonlinear potential of μ and the Wiener integral of 𝐑 n Ω . This quantifies the result on necessity of the Wiener criterion.

Poisson-Boltzmann equation in ℝ³

A. Krzywicki, T. Nadzieja (1991)

Annales Polonici Mathematici

The electric potential u in a solute of electrolyte satisfies the equation Δu(x) = f(u(x)), x ∈ Ω ⊂ ℝ³, u | Ω = 0 . One studies the existence of a solution of the problem and its properties.

Porous media equation on locally finite graphs

Li Ma (2022)

Archivum Mathematicum

In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph....

Currently displaying 61 – 80 of 200