Displaying 141 – 160 of 200

Showing per page

Prescribing a fourth order conformal invariant on the standard sphere, part II : blow up analysis and applications

Zindine Djadli, Andrea Malchiodi, Mohameden Ould Ahmedou (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere ( 𝕊 n , h ) . We derive from this analysis some a priori estimates in dimension 5 and 6 . On 𝕊 5 these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On 𝕊 6 we prove the existence of at least one...

Prescribing Q -curvature on higher dimensional spheres

Khalil El Mehdi (2005)

Annales mathématiques Blaise Pascal

We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.

Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien

Alano Ancona (1978)

Annales de l'institut Fourier

L’article étudie le compactifié de Martin d’un domaine lipschitzien Ω relativement à un opérateur elliptique à coefficients hödériens L  ; on étend aux fonctions L -harmoniques et aux fonctions L -harmoniques adjointes sur Ω une estimation de L -Carleson pour le cas L = Δ , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions L -harmoniques 0 sur Ω . Conséquences : Q Ω , et normalisée en A 0 Ω  ; un théorème de type Fatou-Doob sur l’existence de limites angulaires.On...

Problème de Dirichlet pour les fonctions α -harmoniques sur les domaines coniques

Krzysztof Bogdan, Tomasz Jakubowski (2005)

Annales mathématiques Blaise Pascal

On considère le noyau de Poisson du processus α -stable symétrique pour un domaine conique. Puis on considère le problème d’intégrabilité du noyau de Poisson à la puissance p . On donne des conditions sur q pour qu’il existe une solution au problème de Dirichlet pour les fonctions α -harmoniques sur les domaines coniques, avec une condition au bord donnée par une fonction de L q .

Currently displaying 141 – 160 of 200