Displaying 161 – 180 of 193

Showing per page

Null controllability of a coupled model in population dynamics

Younes Echarroudi (2023)

Mathematica Bohemica

We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of the general biharmonic problem by the finite element method

Jiří Hřebíček (1982)

Aplikace matematiky

The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit C 1 -elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform V O h -ellipticity are found.

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace's equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

Numerical homogenization: survey, new results, and perspectives

Antoine Gloria (2012)

ESAIM: Proceedings

These notes give a state of the art of numerical homogenization methods for linear elliptic equations. The guideline of these notes is analysis. Most of the numerical homogenization methods can be seen as (more or less different) discretizations of the same family of continuous approximate problems, which H-converges to the homogenized problem. Likewise numerical correctors may also be interpreted as approximations of Tartar’s correctors. Hence the...

Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium

Milena Dimova, Stefka Dimova, Daniela Vasileva (2013)

Open Mathematics

The paper contributes to the problem of finding all possible structures and waves, which may arise and preserve themselves in the open nonlinear medium, described by the mathematical model of heat structures. A new class of self-similar blow-up solutions of this model is constructed numerically and their stability is investigated. An effective and reliable numerical approach is developed and implemented for solving the nonlinear elliptic self-similar problem and the parabolic problem. This approach...

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Currently displaying 161 – 180 of 193