Displaying 1881 – 1900 of 5493

Showing per page

Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface

Pierre-Etienne Druet (2013)

Mathematica Bohemica

We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that...

Global Schauder estimates for a class of degenerate Kolmogorov equations

Enrico Priola (2009)

Studia Mathematica

We consider a class of possibly degenerate second order elliptic operators on ℝⁿ. This class includes hypoelliptic Ornstein-Uhlenbeck type operators having an additional first order term with unbounded coefficients. We establish global Schauder estimates in Hölder spaces both for elliptic equations and for parabolic Cauchy problems involving . The Hölder spaces in question are defined with respect to a possibly non-Euclidean metric related to the operator . Schauder estimates are deduced by sharp...

Gradient estimates for a nonlinear equation Δ f u + c u - α = 0 on complete noncompact manifolds

Jing Zhang, Bingqing Ma (2011)

Communications in Mathematics

Let ( M , g ) be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation Δ f u + c u - α = 0 in M , where α , c are two real constants and α > 0 , f is a smooth real valued function on M and Δ f = Δ - f . When N is finite and the N -Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that -Bakry-Emery Ricci tensor is bounded from below and | f | is bounded from above,...

Gradient estimates for inverse curvature flows in hyperbolic space

Julian Scheuer (2015)

Geometric Flows

We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces without any further pinching condition besides convexity of the initial hypersurface....

Gradient flows with metric and differentiable structures, and applications to the Wasserstein space

Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...

Currently displaying 1881 – 1900 of 5493