Solutions of nonlinear parabolic equations without growth restrictions on the data.
A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points...
The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees and in space and time discretization, respectively. In the space discretization the nonsymmetric interior...
We introduce a solver method for spatially dependent and nonlinear fluid transport. The motivation is from transport processes in porous media (e.g., waste disposal and chemical deposition processes). We analyze the coupled transport-reaction equation with mobile and immobile areas. The main idea is to apply transformation methods to spatial and nonlinear terms to obtain linear or nonlinear ordinary differential equations. Such differential equations can be simply solved with Laplace transformation...
This article investigates the long-time behaviour of parabolic scalar conservation laws of the type , where and the flux is periodic in . More specifically, we consider the case when the initial data is an disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in norm like a self-similar profile for large times. The proof uses a time and space change of variables which is...
Let X(t) be a diffusion process satisfying the stochastic differential equation dX(t) = a(X(t))dW(t) + b(X(t))dt. We analyse the asymptotic behaviour of p(t) = ProbX(t) ≥ 0 as t → ∞ and construct an equation such that and .
In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
We prove existence and uniqueness of entropy solutions for the Cauchy problem for the quasilinear parabolic equation , where , and is a convex function of with linear growth as , satisfying other additional assumptions. In particular, this class includes a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics.