Équations d'évolution paraboliques fortement non linéaires
We consider the lowest-order Raviart–Thomas mixed finite element method for second-order elliptic problems on simplicial meshes in two and three space dimensions. This method produces saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate the flux unknowns, which implies the equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. The matrix of the final linear system is sparse, positive...
-estimates of weak solutions are established for a quasilinear non-diagonal parabolic system with a special structure whose leading terms are modelled by p-Laplacians. A generalization of the weak maximum principle to systems of equations is employed.
We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...
We establish exact Schauder estimates of solutions of the transmission problem for linear parabolic second order equations with explicit dependence on the smoothness of the coefficients. Next we apply the estimates to the solvability of the nonlinear transmission problem.