An index for global Hopf bifurcation in parabolic systems.
An optimal control problem is studied for a predator-prey system of PDE, with a logistic growth rate of the prey and a general functional response of the predator. The control function has two components. The purpose is to maximize a mean density of the two species in their habitat. The existence of the optimal solution is analyzed and some necessary optimality conditions are established. The form of the optimal control is found in some particular...
Using the approach in [5] for analysing time discretization error and assuming more regularity on the initial data, we improve on the error bound derived in [2] for a fully practical piecewise linear finite element approximation with a backward Euler time discretization of a model for phase separation of a multi-component alloy with non-smooth free energy.
Dans cet article, nous étudions la sensibilité d’un problème de contrôle optimal de type bilinéaire. Le coût est différentiable, quadratique et strictement convexe. Le système est gouverné par un opérateur parabolique du quatrième ordre et présente une perturbation additive dans l’équation d’état, ainsi qu’une partie bilinéaire, relativement au contrôle et à l’état , de la forme . Sous des conditions de petitesse de l’état initial et de la perturbation, nous exploitons les propriétés de régularité...
In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development...
This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in . A family of fully discrete approximation...
This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L2 x L∞ initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H1 x H1 ∩ L∞. A family of fully...
Abstract Variational inequalities (free boundaries), governed by the p-parabolic equation (p > 2), are the objects of investigation in this paper. Using intrinsic scaling we establish the behavior of solutions near the free boundary. A consequence of this is that the time levels of the free boundary are porous (in N-dimension) and therefore its Hausdorff dimension is less than N. In particular the N-Lebesgue measure of the free boundary is zero for each t-level.
This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...
This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...
We consider an abstract parabolic problem in a framework of maximal monotone graphs, possibly multi-valued, with growth conditions formulated with the help of an x-dependent N-function. The main novelty of the paper consists in the lack of any growth restrictions on the N-function combined with its anisotropic character, namely we allow the dependence on all the directions of the gradient, not only on its absolute value. This leads to using the notion of modular convergence and studying in detail...