Page 1 Next

Displaying 1 – 20 of 40

Showing per page

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Simulation of electrophysiological waves with an unstructured finite element method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Simulation of Electrophysiological Waves with an Unstructured Finite Element Method

Yves Bourgault, Marc Ethier, Victor G. LeBlanc (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

Single-point blow-up for a semilinear parabolic system

Ph. Souplet (2009)

Journal of the European Mathematical Society

We consider positive solutions of the system u t - Δ u = v p ; v t - Δ v = u q in a ball or in the whole space, with p , q > 1 . Relatively little is known on the blow-up set for semilinear parabolic systems and, up to now, no result was available for this basic system except for the very special case p = q . Here we prove single-point blow-up for a large class of radial decreasing solutions. This in particular solves a problem left open in a paper of A. Friedman and Y. Giga (1987). We also obtain lower pointwise estimates for the final...

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Some mathematical problems arising in heterogeneous insular ecological models.

Sébastien Gaucel, Michel Langlais (2002)

RACSAM

En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...

Some results about dissipativity of Kolmogorov operators

Giuseppe Da Prato, Luciano Tubaro (2001)

Czechoslovak Mathematical Journal

Given a Hilbert space H with a Borel probability measure ν , we prove the m -dissipativity in L 1 ( H , ν ) of a Kolmogorov operator K that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.

Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B: Effects of Severity and Ahemphil B Treatment

A. A. Tokarev, Yu. V. Krasotkina, M. V. Ovanesov, M. A. Panteleev, M. A. Azhigirova, V. A. Volpert, F. I. Ataullakhanov, A. A. Butilin (2010)

Mathematical Modelling of Natural Phenomena

Spatial dynamics of fibrin clot formation in non-stirred system activated by glass surface was studied as a function of FIX activity. Haemophilia B plasma was obtained from untreated patients with different levels of FIX deficiency and from severe haemophilia B patient treated with FIX concentrate (Ahemphil B) during its clearance with half-life t1/2=12 hours. As reported previously (Ataullakhanov et al. Biochim Biophys Acta 1998; 1425: 453-468), clot growth in space showed two distinct phases:...

Spatial patterns for reaction-diffusion systems with conditions described by inclusions

Jan Eisner, Milan Kučera (1997)

Applications of Mathematics

We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.

Spatially-dependent and nonlinear fluid transport: coupling framework

Jürgen Geiser (2012)

Open Mathematics

We introduce a solver method for spatially dependent and nonlinear fluid transport. The motivation is from transport processes in porous media (e.g., waste disposal and chemical deposition processes). We analyze the coupled transport-reaction equation with mobile and immobile areas. The main idea is to apply transformation methods to spatial and nonlinear terms to obtain linear or nonlinear ordinary differential equations. Such differential equations can be simply solved with Laplace transformation...

Speed-up of reaction-diffusion fronts by a line of fast diffusion

Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, Luca Rossi (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction...

Spread Pattern Formation of H5N1-Avian Influenza and its Implications for Control Strategies

R. Liu, V. R. S. K. Duvvuri, J. Wu (2008)

Mathematical Modelling of Natural Phenomena

Mechanisms contributing to the spread of avian influenza seem to be well identified, but how their interplay led to the current worldwide spread pattern of H5N1 influenza is still unknown due to the lack of effective global surveillance and relevant data. Here we develop some deterministic models based on the transmission cycle and modes of H5N1 and focusing on the interaction among poultry, wild birds and environment. Some of the model parameters are obtained from existing literatures, and others...

Currently displaying 1 – 20 of 40

Page 1 Next