Page 1 Next

Displaying 1 – 20 of 31

Showing per page

The continuum reaction-diffusion limit of a stochastic cellular growth model

Stephan Luckhaus, Livio Triolo (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered....

The defocusing energy-critical Klein-Gordon-Hartree equation

Qianyun Miao, Jiqiang Zheng (2015)

Colloquium Mathematicae

We study the scattering theory for the defocusing energy-critical Klein-Gordon equation with a cubic convolution u t t - Δ u + u + ( | x | - 4 | u | ² ) u = 0 in spatial dimension d ≥ 5. We utilize the strategy of Ibrahim et al. (2011) derived from concentration compactness ideas to show that the proof of the global well-posedness and scattering can be reduced to disproving the existence of a soliton-like solution. Employing the technique of Pausader (2010), we consider a virial-type identity in the direction orthogonal to the momentum vector...

The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model

Shin-Ichiro Ei, Tohru Tsujikawa (2009)

Kybernetika

Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in 2 and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...

The Effect of Bacteria on Epidermal Wound Healing

E. Agyingi, S. Maggelakis, D. Ross (2010)

Mathematical Modelling of Natural Phenomena

Epidermal wound healing is a complex process that repairs injured tissue. The complexity of this process increases when bacteria are present in a wound; the bacteria interaction determines whether infection sets in. Because of underlying physiological problems infected wounds do not follow the normal healing pattern. In this paper we present a mathematical model of the healing of both infected and uninfected wounds. At the core of our model is an...

The logarithmic delay of KPP fronts in a periodic medium

François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik (2016)

Journal of the European Mathematical Society

We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between the position of an initially compactly supported solution and that of a traveling wave grows logarithmically in time.

The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation

Juan Luis Vázquez (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.

The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below

Tomasz Cieślak (2006)

Banach Center Publications

In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilinear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from below of the Lyapunov functional. In fact, we were able to present a condition under which the Lyapunov functional is bounded from below and a solution exists globally. In the present paper we prove that whenever the Lyapunov functional is bounded from below the solution exists globally.

The speed of propagation for KPP type problems. I: Periodic framework

Henry Berestycki, François Hamel, Nikolai Nadirashvili (2005)

Journal of the European Mathematical Society

This paper is devoted to some nonlinear propagation phenomena in periodic and more general domains, for reaction-diffusion equations with Kolmogorov–Petrovsky–Piskunov (KPP) type nonlinearities. The case of periodic domains with periodic underlying excitable media is a follow-up of the article [7]. It is proved that the minimal speed of pulsating fronts is given by a variational formula involving linear eigenvalue problems. Some consequences concerning the influence of the geometry of the domain,...

Time delays in proliferation and apoptosis for solid avascular tumour

Urszula Foryś, Mikhail Kolev (2003)

Banach Center Publications

The role of time delays in solid avascular tumour growth is considered. The model is formulated in terms of a reaction-diffusion equation and mass conservation law. Two main processes are taken into account-proliferation and apoptosis. We introduce time delay first in underlying apoptosis only and then in both processes. In the absence of necrosis the model reduces to one ordinary differential equation with one discrete delay which describes the changes of tumour radius. Basic properties of the...

Time-delay regularization of anisotropic diffusion and image processing

Abdelmounim Belahmidi, Antonin Chambolle (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.

Time-delay regularization of anisotropic diffusion and image processing

Abdelmounim Belahmidi, Antonin Chambolle (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.

Currently displaying 1 – 20 of 31

Page 1 Next