On a scalar conservation law with nonlinear diffusion and linear dispersion in heterogeneous media.
Aleksić, Jelena, Mitrović, Darko, Pilipović, Stevan (2008)
Novi Sad Journal of Mathematics
Z. A. Wang (2010)
Mathematical Modelling of Natural Phenomena
This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and...
Tervo, J., Nihtilä, M.T., Kokkonen, P. (2003)
Journal of Applied Mathematics
Juraj Zeman (1991)
Applications of Mathematics
The paper concerns the existence of bounded weak solutions of a anonlinear diffusion equation with nonhomogeneous mixed boundary conditions.
M. Prizzi, K. P. Rybakowski (2003)
Studia Mathematica
We study a family of semilinear reaction-diffusion equations on spatial domains , ε > 0, in lying close to a k-dimensional submanifold ℳ of . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by . The definition of , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable characterizations...
Sophocleous, Christodoulos, Wiltshire, Ron J. (2006)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
M. E. Vares (1991)
Annales de l'I.H.P. Physique théorique
Mustafa Inc (2004)
Kragujevac Journal of Mathematics
de Oliveira, Luiz Augusto (1998)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Surla, Katarina, Uzelac, Zorica (2003)
Novi Sad Journal of Mathematics
Mokhtar Kirane, Mahmoud Qafsaoui (2002)
Revista Matemática Complutense
We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧ ut + Ltu = a∇u on Rnx(0,∞)⎩ u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...
Pierre Cornilleau, Sergio Guerrero (2013)
ESAIM: Control, Optimisation and Calculus of Variations
In this paper we study the null-controllability of an artificial advection-diffusion system in dimension n. Using a spectral method, we prove that the control cost goes to zero exponentially when the viscosity vanishes and the control time is large enough. On the other hand, we prove that the control cost tends to infinity exponentially when the viscosity vanishes and the control time is small enough.
Brzychczy, Stanisław (2002)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Salvi, Rodolfo (1985/1986)
Portugaliae mathematica
Hamid El Ouardi (2007)
Archivum Mathematicum
This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
J.A. Sherratt (2010)
Mathematical Modelling of Natural Phenomena
Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front...
Büger, M. (1998)
Acta Mathematica Universitatis Comenianae. New Series
Piotr Biler, Lorenzo Brandolese (2009)
Studia Mathematica
We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.
Crema, Janete, do Nascimento, Arnaldo Simal (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Aggarwala, B.D., Nasim, C. (1987)
International Journal of Mathematics and Mathematical Sciences