Displaying 241 – 260 of 317

Showing per page

Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions

Hang Yu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µin three dimensions, div ( μ ( u + u t ) ) + ( λ div u ) + V u = 0 whereλ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.

Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions*

Hang Yu (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, div ( μ ( u + u t ) ) + ( λ div u ) + V u = 0 where λ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.

Study of a three component Cahn-Hilliard flow model

Franck Boyer, Céline Lapuerta (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...

Su un teorema di unicità per l'equazione semilineare del calore in un dominio illimitato

Piero Bassanini (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A periodic BVP for a semilinear elliptic-parabolic equation in an unbounded domain Ω contained in a half-space of n is considered, with Dirichlet boundary conditions on the finite part of Ω . A theorem of uniqueness of periodic solutions is proved by showing that a suitable function of the "energy" E ( x ) is subharmonic in Ω and satisfies a Phragmèn-Lindelöf growth condition at infinity.

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Stanisław Migórski (2012)

Open Mathematics

We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...

Currently displaying 241 – 260 of 317