Strong maximum and minimum principles for parabolic functional-differential problems with nonlocal inequalities
This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µin three dimensions, whereλ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, where λ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...
A periodic BVP for a semilinear elliptic-parabolic equation in an unbounded domain contained in a half-space of is considered, with Dirichlet boundary conditions on the finite part of . A theorem of uniqueness of periodic solutions is proved by showing that a suitable function of the "energy" is subharmonic in and satisfies a Phragmèn-Lindelöf growth condition at infinity.
We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...