Previous Page 16

Displaying 301 – 317 of 317

Showing per page

Switching control

Enrique Zuazua (2011)

Journal of the European Mathematical Society

We analyze the problem of switching controls for control systems endowed with different actuators. The goal is to control the dynamics of the system by switching from an actuator to the other in a systematic way so that, in each instant of time, only one actuator is active. We first address a finite-dimensional model and show that, under suitable rank conditions, switching control strategies exist and can be built in a systematic way. To do this we introduce a new variational principle building...

Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo, Rolando Magnanini, Shigeru Sakaguchi (2015)

Journal of the European Mathematical Society

We consider the functional Ω ( v ) = Ω [ f ( | D v | ) - v ] d x , where Ω is a bounded domain and f is a convex function. Under general assumptions on f , Crasta [Cr1] has shown that if Ω admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball. With some restrictions on f , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...

Systèmes hyperboliques et viscosité évanescente

Frédéric Rousset (2002/2003)

Séminaire Bourbaki

Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses t u ε + x f ( u ε ) = ε x x u ε de systèmes strictement hyperboliques t u + x f ( u ) = 0 en une dimension d’espace. Ils ont en particulier montré l’existence globale ( t 0 ), l’unicité et la stabilité des solutions et justifié la convergence quand ε tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues...

Systems of reaction-diffusion equations with spatially distributed hysteresis

Pavel Gurevich, Sergey Tikhomirov (2014)

Mathematica Bohemica

We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of...

Currently displaying 301 – 317 of 317

Previous Page 16