Error Estimates for Semidiscrete Galerkin Type Approximations for Semilinear Evolution Equations with Nonsmooth Initial Data.
We prove global pointwise estimates for the Green function of a parabolic operator with potential in the parabolic Kato class on a cylindrical domain Ω. We apply these estimates to obtain a new and shorter proof of the Harnack inequality [16], and to study the boundary behavior of nonnegative solutions.
A theorem on estimates of solutions of impulsive parabolic equations by means of solutions of impulsive ordinary differential equations is proved. An application to the population dynamics is given.
We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in . Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup associated with the realization of the operator in the space of all the bounded and continuous functions in
-estimates of weak solutions are established for a quasilinear non-diagonal parabolic system with a special structure whose leading terms are modelled by p-Laplacians. A generalization of the weak maximum principle to systems of equations is employed.
A-priori estimates in weighted Hölder norms are obtained for the solutions of a one- dimensional boundary value problem for the heat equation in a domain degenerating at time t = 0 and with boundary data involving simultaneously the first order time derivative and the spatial gradient.