Previous Page 4

Displaying 61 – 74 of 74

Showing per page

Full discretization of some reaction diffusion equation with blow up

Geneviève Barro, Benjamin Mampassi, Longin Some, Jean Ntaganda, Ousséni So (2006)

Open Mathematics

This paper aims at the development of numerical schemes for nonlinear reaction diffusion problems with a convection that blows up in a finite time. A full discretization of this problem that preserves the blow - up property is presented as well as a numerical simulation. Efficiency of the method is derived via a numerical comparison with a classical scheme based on the Runge Kutta scheme.

Full regularity of bounded solutions to nondiagonal parabolic systems of two equations

Dmitry Portnyagin (2008)

Applicationes Mathematicae

Hölder continuity and, basing on this, full regularity and global existence of weak solutions is studied for a general nondiagonal parabolic system of nonlinear differential equations with the matrix of coefficients satisfying special structure conditions and depending on the unknowns. A technique based on estimating a certain function of unknowns is employed to this end.

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Fundamental solutions and asymptotic behaviour for the p-Laplacian equation.

Soshana Kamin, Juan Luis Vázquez (1988)

Revista Matemática Iberoamericana

We establish the uniqueness of fundamental solutions to the p-Laplacian equationut = div (|Du|p-2 Du),   p > 2,defined for x ∈ RN, 0 < t < T. We derive from this result the asymptotic behavoir of nonnegative solutions with finite mass, i.e., such that u(*,t) ∈ L1(RN). Our methods also apply to the porous medium equationut = ∆(um),   m > 1,giving new and simpler proofs of known results. We finally introduce yet another method of proving asymptotic results based on the...

Fundamental solutions for Dirac-type operators

Swanhild Bernstein (1996)

Banach Center Publications

We consider the Dirac-type operators D + a, a is a paravector in the Clifford algebra. For this operator we state a Cauchy-Green formula in the spaces C 1 ( G ) and W p 1 ( G ) . Further, we consider the Cauchy problem for this operator.

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Currently displaying 61 – 74 of 74

Previous Page 4