Existence and construction of anisotropic solutions to the multidimensional equation of nonlinear diffusion. I.
We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.
We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.
In this work we study the problem in , in , on , in , is a bounded regular domain such that , , , , and are positive functions such...
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
It is known that degenerate parabolic equations exhibit somehow different phenomena when we compare them with their elliptic counterparts. Thus, the problem of existence and properties of the Green function for degenerate parabolic boundary value problems is not completely solved, even after the contributions of [GN] and [GW4], in the sense that the existence problem is still open, even if the a priori estimates proved in [GN] will be crucial in our approach (...).