Displaying 121 – 140 of 187

Showing per page

The use of linear approximation scheme for solving the Stefan problem

Peter Dzurenda (1997)

Applications of Mathematics

This paper deals with the linear approximation scheme to approximate a singular parabolic problem: the two-phase Stefan problem on a domain consisting of two components with imperfect contact. The results of some numerical experiments and comparisons are presented. The method was used to determine the temperature of steel in the process of continuous casting.

The waiting time property for parabolic problems trough the nondiffusion of support for the stationary problems.

Luis Alvarez, Jesús Ildefonso Díaz (2003)

RACSAM

In this note we study the waiting time phenomenon for local solutions of the nonlinear diffusion equation through its connection with the nondiffusion of the support property for local solutions of the family of discretized elliptic problems. We show that, under a suitable growth condition on the initial datum near the boundary of its support, a finite part of the family of solutions of the discretized problem maintain unchanged its support.

The Wolff gradient bound for degenerate parabolic equations

Tuomo Kuusi, Giuseppe Mingione (2014)

Journal of the European Mathematical Society

The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of p -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion*

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful...

Three cylinder inequalities and unique continuation properties for parabolic equations

Sergio Vessella (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove the following unique continuation property. Let u be a solution of a second order linear parabolic equation and S a segment parallel to the t -axis. If u has a zero of order faster than any non constant and time independent polynomial at each point of S then u vanishes in each point, x , t , such that the plane t = t has a non empty intersection with S .

Time and space Sobolev regularity of solutions to homogeneous parabolic equations

Gabriella Di Blasio (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give necessary and sufficient conditions on the initial data such that the solutions of parabolic equations have a prescribed Sobolev regularity in time and space.

Currently displaying 121 – 140 of 187