On 3D slightly compressible Euler equations.
Energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of waves is independent of the hysteresis operator.
This article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces based on the solution of Generalized Riemann Problems (GRPs) with piecewise polynomial initial data. The solution of the generalized Riemann...
This paper deals with the newly observed singularities of the solutions of some specific examples of weakly hyperbolic semilinear systems in R². Two, respectively three, characteristics are supposed to be mutually tangential at the origin only and the initial data are continuous only. The exact strength of the new-born singularities is investigated too.
The paper deals with the asymptotic behavior of generalized solutions to nonlinear first order equations. With the aid of explicit variational representation one studies the decrease of solutions for a large time. And for the small time an asymptotic of the perturbation?s front is calculated.
We consider a system of balance laws describing the motion of an ionized compressible fluid interacting with magnetic fields and radiation effects. The local-in-time existence of a unique smooth solution for the Cauchy problem is proven. The proof follows from the method of successive approximations.
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This...
In this paper we prove the existence of a weak solution for a given semilinear singular real hyperbolic system.
We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).
We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order where is a function defined by , . Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.