Displaying 381 – 400 of 475

Showing per page

Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations

Fabrice Planchon (1999)

Journées équations aux dérivées partielles

We prove that the initial value problem for the semi-linear Schrödinger and wave equations is well-posed in the Besov space B ˙ 2 n 2 - 2 p , ( 𝐑 n ) , when the nonlinearity is of type u p , for p 𝐍 . This allows us to obtain self-similar solutions, as well as to recover previously known results for the solutions under weaker smallness assumptions on the data.

Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations

Makoto Nakamura, Tohru Ozawa (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space n with order s < n / 2 . The assumptions on the nonlinearities are described in terms of power behavior p 1 at zero and p 2 at infinity such as 1 + 4 / n p 1 p 2 1 + 4 / ( n - 2 s ) for NLS and NLKG, and 1 + 4 / ( n - 1 ) p 1 p 2 1 + 4 / ( n - 2 s ) for NLW.

Small time-periodic solutions to a nonlinear equation of a vibrating string

Eduard Feireisl (1987)

Aplikace matematiky

In this paper, the system consisting of two nonlinear equations is studied. The former is hyperbolic with a dissipative term and the latter is elliptic. In a special case, the system reduces to the approximate model for the damped transversal vibrations of a string proposed by G. F. Carrier and R. Narasimha. Taking advantage of accelerated convergence methods, the existence of at least one time-periodic solution is stated on condition that the right-hand side of the system is sufficiently small.

Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables

Slim Ibrahim, Mohamed Majdoub (2003)

Bulletin de la Société Mathématique de France

Dans ce travail, on s’intéresse à l’existence globale de solutions classiques et au sens de Shatah-Struwe de l’équation des ondes critique à coefficients variables en dimension d d’espace A u + | u | 4 / ( d - 2 ) u = t 2 u - div ( A ( x ) · x u ) + | u | 4 / ( d - 2 ) u = 0 , t × x d , A est une fonction régulière à valeurs dans les matrices d × d définies positives, valant l’identité en dehors d’un compact fixe.

Soluzioni periodiche di PDEs Hamiltoniane

Massimiliano Berti (2004)

Bollettino dell'Unione Matematica Italiana

Presentiamo nuovi risultati di esistenza e molteplicità di soluzioni periodiche di piccola ampiezza per equazioni alle derivate parziali Hamiltoniane. Otteniamo soluzioni periodiche di equazioni «completamente risonanti» aventi nonlinearità generali grazie ad una riduzione di tipo Lyapunov-Schmidt variazionale ed usando argomenti di min-max. Per equazioni «non risonanti» dimostriamo l'esistenza di soluzioni periodiche di tipo Birkhoff-Lewis, mediante un'opportuna forma normale di Birkhoff e realizzando...

Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations

Peter Poláčik (2002)

Mathematica Bohemica

We consider three types of semilinear second order PDEs on a cylindrical domain Ω × ( 0 , ) , where Ω is a bounded domain in N , N 2 . Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of Ω × ( 0 , ) is reserved for time t , the third type is an elliptic equation with a singled out unbounded variable t . We discuss the asymptotic behavior, as t , of solutions which are defined and bounded on Ω × ( 0 , ) .

Currently displaying 381 – 400 of 475