Page 1 Next

Displaying 1 – 20 of 58

Showing per page

Bifurcation of free vibrations for completely resonant wave equations

Massimiliano Berti, Philippe Bolle (2004)

Bollettino dell'Unione Matematica Italiana

We prove existence of small amplitude, 2p/v-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency ω belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Blow-up and global existence of a weak solution for a sine-Gordon type quasilinear wave equation

João-Paulo Dias, Mário Figueira (2000)

Bollettino dell'Unione Matematica Italiana

Si considera il problema di Cauchy per l'equazione (cf. [1]): ϕ t t - ϕ x x - ϕ x 2 ϕ x x + sin ϕ = 0 x , t R × R + . Nella prima parte di questo articolo si dimostra, per dati iniziali particolari, un risultato di «blow-up» della soluzione classica locale (in tempo), seguendo le idee introdotte in [8], [2] ed [4]. Nella seconda parte, viene utilizzato il metodo di compattezza per compensazione (cf. [13], [10] ed [5]) ed una estensione del principio delle regioni invarianti (cf. [12]) per dimostrare l'esistenza di una soluzione debole globale entropica....

Blow-up for solutions of hyperbolic PDE and spacetime singularities

Alan D. Rendall (2000)

Journées équations aux dérivées partielles

An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory of hyperbolic equations in this field is presented. A direction which has turned out to be fruitful is that...

Blow-up of solutions for a viscoelastic equation with nonlinear damping

Yang Zhifeng (2008)

Open Mathematics

The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.

Currently displaying 1 – 20 of 58

Page 1 Next